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Summary. The history of the molecular exciton approach and its application to optical rotatory power

is outlined, followed by a summary of the general theory of electronic anisotropic chiroptical spectros-

copy. The summary includes intensity expressions that are valid regardless of molecular dimensions as

well as expressions valid only in the socalled small molecule limit, and presents the multipolar

representation of the intensity expressions in the later case, emphasizing the importance of including

electric dipole–magnetic dipole and electric dipole–electric quadrupole optical coupling terms on an

equal footing in the description of anisotropic optical rotatory power. Expressions for isotropic chir-

optical intensities are also included, and the difference in structural and point group symmetry require-

ments for anisotropic and isotropic optical rotatory power is discussed. On this basis, we present the

molecular exciton approach for anisotropic chiroptical spectra, including interchromophoric electric

dipole–electric dipole couplings and inter- and intra-chromophoric higher multipole couplings,

allowing for the explicit treatment of coupling between achiral as well as chiral chromophores.

Expressions are developed both for the partial intensities of the individual excitonic excitations and

for the effective band shapes resulting from summation over all excitations within the exciton band. We

discuss the importance of the choice of the reference points required for the description of the relative

locations of the chromophoric units and for the definition of the local chromophoric multipolar

transition moments, and we discuss the limitations of the present formulation. An appendix outlines

the basic rules for the dyadic tensor notations utilized in the theoretical intensity formulations.

Keywords. Molecular exciton theory; Exciton chirality; Anisotropic absorption spectra; Anisotropic

circular dichroism; Point group symmetry.

Introduction

The exciton concept was introduced in solid state physics in the 1930s [1] in
attempts to understand how purely insulating crystals absorb visible or ultraviolet
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light, and it was developed into a variety of approaches differing in the range, or
delocalization, of the assumed elementary excitation processes [2]. In the socalled
tight-binding Frenkel exciton approach [1, 2], which leads directly into the
Davydov molecular exciton approach [3–6], a molecular crystal or an extended
molecular system is divided into identical or closely similar subunits or chromo-
phores [7]. A localized electric dipole allowed electronic excitation within a sub-
unit or chromophore represents the elementary excitation process, and the term
exciton denotes the collective excitation reflecting the interactions between the
chromophores. Within the field of ordinary molecular electronic spectroscopy,
the application of the Davydov molecular exciton approach was initiated by
McClure [3], Kasha [4, 5], and Craig [6] around 1960.

In the field of natural molecular optical rotatory power [8], models based on
interactions between localized excitations came as no surprise in view of the
central role played by the coupled oscillator approaches [8–11] in the history of
this field, and starting in the mid-1950s molecular exciton theory proper was applied
to molecular optical rotatory power in the work of Moffitt et al. [12, 13], Tinoco
et al. [14–16], and Schellman et al. [17, 18] for biopolymers, and by Mason et al.
[19, 20] and Bosnich [21] for organic and inorganic systems, see also Refs. [22–24].
Subsequently, molecular exciton approaches have been developed into powerful
methods for the study of molecular structure problems based on natural optical
rotatory power, see Refs. [25–29] for surveys and discussion of these develop-
ments. For certain classes of molecular systems the ‘‘Exciton Chirality’’ model
proposed by Harada and Nakanishi [23, 26, 30, 31] has been successful in the
assignment of absolute molecular configurations. The overwhelming majority of
experimental and theoretical structural studies based on natural optical rotatory
power, including studies applying molecular exciton theory, have been concerned
with systems characterized by isotropic conditions, as witnessed by the observation
that out of the 29 chapters in the almost encyclopedic volume on circular dichroism
edited by Berova, Nakanishi, and Woody [28], only two chapters address the theory
and measurement of circular dichroism under anisotropic conditions [32, 33].

The basic theme of the present account is the molecular exciton approach to
natural anisotropic ordinary absorption and circular dichroism, i.e. chiroptical spec-
troscopy of oriented molecules in the absence of static magnetic fields; see Refs.
[34, 35] for discussions of exciton approaches to magnetically induced optical
activity. A theory of anisotropic natural molecular optical rotatory power, was first
formulated by Tinoco and Hammerle [36], and a number of alternative derivations
and formulations have been presented over the years [18, 37–44], see Refs. [32, 33,
46–49] for experimental aspects and results. An obvious difference between iso-
tropic and anisotropic optical rotatory power is that the three-dimensional nature of
the anisotropic optical sampling provides additional spectroscopic and structural
information relative to isotropic data. In addition, in the theoretical treatment
of anisotropic optical rotatory power the electric dipole–magnetic dipole and
the electric dipole–electric quadrupole interactions appear on an equal footing
[18, 25, 36, 39–44], whereas isotropic optical rotatory power is governed entirely by
the electric dipole–magnetic dipole interaction [8]. An important structural difference
between anisotropic and isotropic optical activity is that certain classes of achiral
molecular structures may exhibit natural optical rotatory power under anisotropic
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conditions [44, 50–54], referred to as non-enantiomeric optical rotatory power,
whereas chirality (enantiomerism) of course is a sine qua non for isotropic optical
rotatory power. Non-enantiomeric optical rotatory power is well-established in
crystal optics [52–54]. For molecules, the condition for non-enantiomeric natural
optical rotatory power is that the molecule belongs to the achiral point group D2d or
to one of its achiral subgroups, i.e. Cs¼Ch, C2v, and S4 [44, 52, 55]. This feature of
anisotropic molecular optical rotatory power is important in an exciton context,
since a number of chromophoric units in fact belong to the achiral point groups
Cs¼Ch and C2v; see the accompanying communication [56].

As background for the discussion of the exciton approach, the following section
outlines the general theory of natural anisotropic ordinary absorption and circular
dichroism, emphasizing the transition from theoretical intensity expressions that are
valid regardless of molecular dimensions, to the socalled small molecule limit
appropriate for molecules that are small relative to the wavelength of light in the
optical region. The former set of expressions form convenient points of departure for
intensity approaches for extended molecular structures, such as the molecular exci-
ton approximation, whereas the latter set of expressions are deployed in the treat-
ment of the intensity contributions from the individual chromophoric units in the
present context. The subsequent section presents the molecular exciton approach for
anisotropic chiroptical properties with two specific aims in mind, namely the inclu-
sion of contributions from local magnetic dipole and electric quadrupole transition
moments, and the explicit treatment of both partial intensities, i.e. the intensities for
the individual excitations within the exciton band, and overall band intensities with
special emphasis on the parameters determining the spectral shifts in the band max-
ima. The presentation in the two sections is focussed on the basic theory of the
chiroptical anisotropic intensities utilizing a consistent tensorial formulation, the
use of a tensorial formulation being necessitated by the three dimensional nature of
the anisotropic spectral response [18, 40, 42, 43]. The socalled dyadic tensor formu-
lation [43, 44, 57] used here may be somewhat unfamiliar, and the notation and
pertinent rules for the manipulation of dyadic tensors are outlined in the Appendix.

The fact that the contributions from electric quadrupole and magnetic dipole
transition moments are equally important for the anisotropic intensities is inti-
mately coupled to the existence of the non-enantiomeric optical rotatory power
alluded to above. This feature, in turn, makes the choice of chromophoric centers
or reference points for the formulation of the anisotropic intensity expressions in
the exciton model particularly crucial, and we show in the accompanying commu-
nication [56] that the concept of a partial optic axis, introduced by Moffitt [12],
provides a convenient basis for the choice of chromoporic centers and for classi-
fication and analysis of the intensity contributions.

Theory of Anisotropic Absorption Spectra and Circular Dichroism

General Expressions

For a beam of unpolarized light of angular frequency !, the anisotropic partial
absorption coefficient for the electronic excitation q o in a collection of non-
interacting molecules with identical spatial orientation can be written as shown in
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Eq. (1) expressed in S.I. units [25]. No is the number of molecules per unit volume,
�q(!) is a normalized line shape, and we have introduced the directional absorption
intensity Aqðu; !Þ (Eq. (2)) where u is a unit vector in the direction of light pro-
pagation, and where the transition moment is defined in Eq. (3) in terms of the
position and momentum operators, rj and p

j
, for electron j. I is a second rank unit

tensor, and the symbol : denotes a dyadic vector product making the quantity
�

q
ðu; !Þ� : �

q
ðu; !Þ a second rank tensor; see the Appendix for vector and dyadic

tensor notation, and for the notation used for the complex quantities, and see Refs.
[39, 40, 42] for tensorial formulations of chiroptical properties in terms of explicit
index summations.
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The corresponding anisotropic circular dichroism (ACD), expressed in terms of the
partial absorption coefficients for left (‘) and right (r) circularly polarized light
[8, 29], is shown in Eq. (4) [18, 25, 39, 41, 43, 44]. Here the directional ACD in-
tensity is defined in Eq. (5) and the electronic excitation q o is assigned identical
line shapes for absorption and ACD [58].

��qðu; !Þ ¼ �‘
qðu; !Þ � �r

qðu; !Þ ¼
�No

�o�hm2!c
�qð!ÞBqðu; !Þ ð4Þ

Bqðu; !Þ ¼ �Imfu ? ½�q
ðu; !Þ�3 �

q
ðu; !Þ�g ð5Þ

Equations (2) and (5) include the full spatial variation of the electromagnetic
field through the exponential factor exp[i(!=c)u ? rj] in the transition moment in
Eq. (3), and can be referred to as fully retarded [41]. These expressions are
valid regardless of molecular dimensions, and form convenient points of depar-
ture for the treatment of extended molecular structures, making them particu-
larly appropriate for the formulation of molecular exciton approaches. The
formulation in Eqs. (2) and (5) allows the use of complex molecular wavefunc-
tions, although the use of real wavefunctions can be assumed with impunity in
the absence of a static magnetic field. Formulations in terms of complex wave-
functions may come into play in the treatment of the chiroptical properties of
molecular systems allowing degenerate excited states [50], the selection rules
for �-helical polymers being a case in point, see Refs. [25, 35, 59] and refer-
ences therein.

Small Molecule Limits

For the description of the chiroptical properties of molecules that are small relative
to the wavelength of light in the optical region, the socalled small molecule limit of
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Eqs. (2) and (5) obtains by expansion to second order in the wave vector
k ¼ ð!=cÞu ¼ ð2�=�Þu, where � is the wavelength of the light beam. Assuming
purely real wavefunctions for the description of the molecular states in this limit,
expansion of Eq. (2) yields Eq. (6) [25].
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Here !q¼ (Eq�Eo)=�h is the angular resonance frequency, and Dq (Eq. (7)) is the
dipole strength tensor. The electric dipole transition moment is given in Eq. (8),
and the assumption of real wavefunctions in the small molecule limit makes Eq. (7)
symmetric in the Cartesian indices, i.e. ½Dq��� ¼ ½Dq���, cf. Eq. (A.8).
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In the same limit the expansion of Eq. (5) yields Eq. (9) [44].
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For real wavefunctions the first term in Eq. (9) vanishes identically, the prefix Re
on the second term becomes superfluous, and Eq. (9) can be written as shown in
Eq. (10) where Rq (Eq. (11)) is the rotatory strength tensor [18, 40–44]. From
Eqs. (A.4) and (A.9), the explicit expressions for the transition moment products in
Eq. (11) become as given in Eq. (12) utilizing the alternating character of ��
� , and
under the assumption of real wavefunctions. The tensor in Eq. (11) is hence sym-
metric in the Cartesian indices.

Bqðu; !Þ ¼
4m2!

3c
!qfu ?Rq ? ug ð10Þ

Rq¼
3e2

4m2!q

��
o

����
X
j

rj : pj

����q
�
3

�
q

����
X
j

p
j

����o
�
�
�

o

����
X
j

p
j

����q
�
3

�
q

����
X
j

p
j
: rjÞ

����o
��

ð11Þ

½hojr : pjqi3hqjpjoi��� ¼
X
�

X



hojr�p�jqihqjp
joi��
�

¼ �½hojr : pjqi3hqjpjoi��� ð12Þ
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We note in passing that the quantities fu ?Dq ? ug and fu ?Rq ? ug entering in the
expressions for the directional absorption and ACD intensities in Eqs. (6) and (10)
can be expressed in the more general form given in Eq. (13) [60].

OðuÞ ¼ fu ?X ? ug ¼ sin2� cos2
O11 þ sin2� sin2
O22 þ cos2�O33

þ sin2� sin
 cos
 ½O12 þ O21�
þ sin� cos� fcos
 ½O13 þ O31� þ sin
 ½O23 þ O32�g ð13Þ

Here � and ’ are the spherical polar coordinates of the directional unit vector u
relative to the molecular coordinate system, and X is a second rank tensor with the
Cartesian elements Oij, cf. Eq. (A.7). For absorption and ACD spectra, Eq. (13) shows
explicitly how the tensor elements govern the way the anisotropic intensities vary
with the direction of the light beam, as illustrated in Refs. [44, 61]; see Ref. [60] for
discussion and display of related directional molecular properties. Note that the pro-
jection represented by the expression fu ?X ? ug only samples the symmetric tensor
component with the elements 1=2½Oij þ Oji�. The use of symmetrized response ten-
sors in Eq. (11) and in Eqs. (15) and (16) below, as derived in Ref. [44], can therefore
be seen as a notational redundancy; see Ref. [44] for a discussion of this aspect.

Multipolar Representations

Separation of the dyadic transition moment operator
P

j rj : p
j

in Eq. (11) into its

symmetric and antisymmetric components, cf. Eqs. (A.13)–(A.15), yields Eq. (14)

[44, 45], where R(M)q is the electric dipole–magnetic dipole contribution and
R(Q)q is the electric dipole–electric quadrupole contribution (Eqs. (15) and (16)).
The electric dipole transition moment is given in Eq. (8), and the electric quadrupole
and magnetic dipole transition moments are given in Eqs. (17) and (18).
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The multipolar tensors in Eqs. (15) and (16) are written in a form that is symmetric
in the Cartesian indices; cf. the discussion of Eq. (13).

Anisotropic versus Isotropic Intensities

The intensities expressed in Eqs. (1), (2), (6) and (4), (5), (10) for ordinary and
rotatory absorption are anisotropic, i.e. they depend explicitly on the direction of
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the light beam relative to the space fixed molecular ensemble, as expressed by the
propagation vector u. In the fully retarded expressions for the directional inten-
sities, Eqs. (2) and (5), the propagation vector enters both as external multiplica-
tive factor and through the phase factor in the exponential part of the operator in
Eq. (3), making the formulation of explicit expressions for the directional depen-
dence, and hence the extraction of isotropic, i.e. spherically averaged or direc-
tionally independent, intensities a demanding undertaking; see Refs. [50, 62].
On the other hand, in the response expression in the small molecule limit,
Eq. (13), the directional dependence is contained entirely in the trigonometric fac-
tors multiplying the tensor elements, and the isotropic component is obtained as
Eq. (19), [50].

O ¼ ð1=4�Þ
ð
Oð�; 
Þ sin �d�d
 ¼ ð1=3ÞfO11 þ O22 þ O33g ¼ ð1=3ÞtrfXg ð19Þ

From Eqs. (7), (14)–(16), and (19) the resulting dipole strength [63] and the rota-
tory strength [8, 58, 64] governing ordinary rotatory intensities under isotropic
conditions are shown in Eqs. (20) and (21).

Dq ¼ ð1=3ÞtrfDqg ¼ jhoj	e
jqij2 ð20Þ
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e
jqi ? hqj	

m
joi� ð21Þ

The tensor R(Q)q, Eq. (16), is traceless, and electric dipole–electric quadrupole
terms hence do not contribute to isotropic CD [8], whereas electric dipole–mag-
netic dipole and electric dipole–electric quadrupole terms enter on an equal footing
in the description of anisotropic ACD, Eqs. (14)–(16).

Discussion

Chirality (enantiomerism) is a well established condition for isotropic natural
optical rotatory power, i.e. a necessary condition for non-vanishing values of the
isotropic rotatory strength Rq, Eq. (21). In the language of point group symmetry
[55], the chirality condition translates into the absence of inversion center and
symmetry planes, or more generally the absence of an improper rotation axis Sn,
so that the only chiral point groups become the pure rotation groups Cn, Dn, T, and
O. As mentioned in the Introduction, certain classes of achiral (non-enantiomeric)
molecular structures may exhibit natural optical rotatory power under anisotropic
conditions [44, 50–54]. The condition for non-enantiomeric natural optical rota-
tory power is that the molecule belongs to the achiral point group D2d or to one of
its achiral subgroups, i.e. Cs¼Ch, C2v, and S4 [44, 52]. Calculations and graphical
displays illustrating the ACD of enantiomeric and non-enantiomeric optically
active molecular systems are presented in Ref. [44], while the accompanying
communication [56] presents a more detailed discussion of the symmetry aspects
of the rotatory strength tensors, Eqs. (14)–(16), in the perspective of the partial
optic axis.

Computational aspects are not an issue here. However, we note that the rela-
tions between transition moments expressed in terms of the operator pairs

P
j p

j
and

P
j rj in Eq. (8), and

P
jðrj : p

j
þ p

j
: rjÞ and

P
j rj : rj in Eq. (17), are not
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necessarily fulfilled in approximate calculations [12, 18, 43, 58]. See Ref. [61] for
an overview of computational approaches.

Molecular Exciton Theory

Description of the Exciton States

The Frenkel-Davidov molecular exciton approach [1–6] assumes a partitioning of an
extended part of a molecular system into identical subunits or chromophores, and
neglects overlap and electron exchange between the spectroscopically active electrons
in different chromophores [7, 11]. Using ’�;s to denote the wavefunction for the s’th
electronic state of chromophore �, the electronic ground state of the exciton system
can be represented by the product function shown in Eq. (22) where N is the number
of chromophores in the excitonic system. Single chromophore excited states can
similarly be represented as given in Eq. (23) and the q’th electronic state of an exciton
band associated with chromophore states ’�;1 is then given as Eq. (24).

joi ¼P
N

�
’�;o ð22Þ

j�; si ¼ ’�;sP
N

� 6¼�
’�;o ð23Þ

jqi ¼
XN

�

C�;qj�; 1i ð24Þ

We shall assume that the 1 o chromophoric excitation is electric dipole allowed,
i.e. the local electric dipole transition moment (Eq. (25)) is assumed non-vanishing.
In Eq. (25), R� is the position vector for a reference point in chromophore � [11],
the reference points being assigned the same relative position in all chromophores.
�
P

j indicates summation over the electrons in this chromophore, and !1 is the
angular resonance frequency for the chromophoric excitation 1 o, cf. Eq. (8).
The sharp bracket notation ji denotes matrix elements and transition moments for
the product wavefunctions defined in Eqs. (22)–(24), whereas the soft bracket
notation j) denotes matrix elements and transition moments expressed for the chro-
mophoric wavefunctions.
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e
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The chromophoric wavefunctions ’�;s will be assumed purely real, in accord
with the treatment of the small molecule limit discussed in the preceeding section,
whereas the formulation of the general exciton theory in this section allows
complex-valued coefficients, C�,q. These coefficients are determined either by sym-
metry considerations for the entire exciton system, or by explicit solution of the
linear equations (Eq. (26)) where !q is the angular resonance frequency for the

260 A. E. Hansen



excitonic excitation q o, and where V�;s;�;t is the chromophoric interaction term.
The coefficients determined by Eq. (26) fulfill the unitary relations (Eqs. (27)–(30)).

XN

�

V�;1;�;1C�;q ¼ ð!q � !1ÞC�;q ð26Þ

XN

�

XN
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XN

q

C�;qð!q � !1Þ2C��;q ¼
X
�

V�;1;�;1V�;1;�;1 ð30Þ

Numerical solution of Eq. (26) will generate real-valued coefficients, whereas
complex-valued coefficients may result from symmetry considerations [12, 35,
50, 59]. For the interaction term we note that the neglect of overlap and electron
exchange between the spectroscopically active electrons in different chromophores
in the molecular exciton approach, and the concomitant use of product wavefunc-
tions of the form given in Eqs. (22) and (23), imply that V�;s;�;t in general takes the
form of multipolar interactions between localized transition densities shown in
Eq. (31), representing the interaction between the transition densities ’�;s’�;o

and ’�;t’�;o. For electric dipole allowed excitations, as assumed here, the inter-
action in Eq. (31) can be truncated to the electric dipole–electric dipole level, ex-
pressed in a dyadic notation in Eq. (32), cf. Eq. (25). Chromophoric self-interaction
is omitted by the condition defined by Eq. (33).

V�;s;�;t ¼ h�; sjV�;�j�; ti ¼ ð’�;s’�;ojV�;�j’�;o’�;tÞ ð31Þ
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e
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e
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2
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e
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e
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�
ð32Þ

V�;1;�;1 ¼ 0 ð33Þ
In practice the evaluation of the interaction in Eq. (32) often proceeds via distrib-
uted transition densities [65].

As defined in Eq. (22), the description of the ground state omits perturbations
due to doubly excited states of the form given by Eq. (34).

j�; 1; �; 1i ¼ ’�;1’�;1 P
N

� 6¼�;�
’�;o ð34Þ
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A consistent treatment of these states can be obtained in the random phase approx-
imation (RPA) [25, 34]. However, the intensity expressions obtained from RPA and
from Eqs. (22)–(33) are quite similar [25], and become essentially identical when !q

is identified with !1, except when they appear in the combination (!q�!1). In
addition, we note that the description of the exciton states in Eq. (24) neglects
perturbations due to higher excited chromophore states, also referred to as interband
mixing; see the Discussion subsection below. For ease of notation we suppress the
superscript N on products and summations in the remaining part of this section.

Partial Exciton Intensities

The localization of the spectroscopically active electrons into chromophoric regions
implies that the transition moment in Eq. (3) can be written as Eq. (35) from Eqs.
(23) and (24). The chromophoric reference vector R� is introduced in Eq. (25), and
the local chromophoric transition moment is defined in Eq. (36).
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From Eqs. (2) and (35) the partial directional absorption intensity for the excitation
q o in the coupled system is then given by Eq. (37) expressed in terms of the
absorption strength coupling tensor (Eq. (38)).

Aqðu; !Þ ¼ Re
X
�

X
�

C�;qC��;q exp½�ið!=cÞu ? ðR� � R�Þ�fu ?D�;1;�;1 ? ug ð37Þ

D�;1;�;1 ¼ ð1=2Þ
�
½�

�;1
ðu; !Þ� ? �

�;1
ðu; !Þ þ �

�;1
ðu; !Þ ? �

�;1
ðu; !Þ��I

� �
�;1
ðu; !Þ� : �

�;1
ðu; !Þ � �

�;1
ðu; !Þ : �

�;1
ðu; !Þ�

�
ð38Þ

Since the reference point R� is located inside the chromophore, and the dimensions
of the chromophores are much smaller than the resonance wavelength of the light,
Eq. (38) can be truncated to the small molecule limit, cf. Eqs. (6) and (7), yielding
Eq. (39), whose diagonal blocks are given by Eq. (40) where D�,1 is the dipole
strength tensor for excitation 1 o in chromophore �, cf. Eq. (7).

D�;1;�;1 ¼ m2!2
1fð�; oj�	

e
j�; 1Þ ? ð�; 1j�	

e
j�; oÞI

� ð�; oj�	
e
j�; 1Þ : ð�; 1j�	

e
j�; oÞg ð39Þ

D�;1;�;1 ¼ ð2=3Þm2!2
1D�;1 ð40Þ

The dipole strength tensors are identical for the individual chromophores except
for the rotations following the orientation of the chromophores, as consequence of
the assumption of identical chromophoric units. The tensors in Eq. (39), and in
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Eqs. (46), (47), and (63) below, are symmetric with respect to interchange of
the chromophoric indices, but are chosen not to be symmetric with respect to the
Cartesian indices in order to avoid notational overcrowding; as justified by the
symmetric sampling of the optical coupling tensors in all the intensity expressions;
cf. the discussion following Eq. (13).

For the partial directional ACD intensity, Eqs. (5) and (35) yield Eq. (41).

Bqðu; !Þ ¼ �Im
X
�

X
�

C�;qC��;q exp½�ið!=cÞu ? ðR� � R�Þ�

�fu ? ½�
�;1
ðu; !Þ�3�

�;1
ðu; !Þg ð41Þ

Expanding the transition moment terms, mutatis mutandis Eq. (9), Eq. (41) can be
written as Eq. (42).

Bqðu; !Þ ¼ dipBqðu; !Þ þ inhBqðu; !Þ ð42Þ
Here dipBqðu; !Þ (Eq. (43)) collects the electric dipole–electric dipole ACD con-
tributions. The inherent ACD contributions are collected in the term inhBqðu; !Þ
(Eq. (44)) where we have introduced the inherent ACD strength coupling tensor
inhC�;1;�;1 (Eq. (45)) with the electric dipole–magnetic dipole contribution
inhCðMÞ�;1;�;1 (Eq. (46)) and the electric dipole–electric quadrupole contribution
inhCðQÞ�;1;�;1 (Eq. (47)), cf. Eqs. (14)–(16).

dipBqðu; !Þ ¼ �m2!2
1Im

X
�

X
�

C�;qC��;q exp½�ið!=cÞu ? ðR� � R�Þ�

3fu ? ½ð�; oj�	
e
j�; 1Þ3ð�; 1j�	

e
j�; oÞ�g ð43Þ

inhBqðu; !Þ ¼
!

c
Re

X
�

X
�

C�;qC��;q exp½�ið!=cÞu ? ðR� � R�Þ�

3fu ? inhC�;1;�;1 ? ug ð44Þ
inhC�;1;�;1 ¼ inhCðMÞ�;1;�;1 þ inhCðQÞ�;1;�;1 ð45Þ

inhCðMÞ�;1;�;1 ¼ m2!1fIm½ð�; oj�	
e
j�; 1Þ ? ð�; 1j�	

m
j�; oÞI

� ð�; oj�	
e
j�; 1Þ : ð�; 1j�	

m
j�; oÞ�

þ Im½ð�; oj�	
e
j�; 1Þ ? ð�; 1j�	

m
j�; oÞI

� ð�; oj�	
e
j�; 1Þ : ð�; 1j�	

m
j�; oÞ�g ð46Þ

inhCðQÞ�;1;�;1 ¼ ð1=2Þm2!2
1fð�; oj�qej�; 1Þ�ð�; 1j�	

e
j�; oÞ

þ ð�; oj�qej�; 1Þ�ð�; 1j�	
e
j�; oÞg ð47Þ

The local magnetic dipole and electric quadrupole transition moments are given in
Eqs. (48) and (49) and the diagonal blocks of the tensors in Eqs. (45)–(47) are given in
Eqs. (50)–(52) where R�,1, R(M)�,1, and R(Q)�,1 are the respective rotatory strength
tensors for excitation 1 o in chromophore �, cf. Eqs. (14)–(15). These tensors are
identical for the individual chromophores except for the rotations following the orien-
tation of the chromophores, again as consequence of the assumption of identical units.
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inhC�;1;�;1 ¼ ð4=3Þm2!1R�;1 ð50Þ
inhCðMÞ�;1;�;1 ¼ ð4=3Þm2!1RðMÞ�;1 ð51Þ
inhCðQÞ�;1;�;1 ¼ ð4=3Þm2!1RðQÞ�;1 ð52Þ

Band Intensities

In practice the experimental absorption and CD spectra often show considerable
congestion, suggesting the development of expressions for the total anisotropic ab-
sorption and ACD intensities associated with the entire exciton band [35, 66–69].
Such band intensities are obtained by summing Eqs. (1) and (4) over all exciton
states yielding Eqs. (53) and (54) where the two contributions to the ACD intensity
are given by Eqs. (55) and (56), cf. Eq. (42), and where we assume identical line
shape functions for the exciton transitions, i.e. �qð!Þ ¼ �ð!� !qÞ for all q.

�ðu; !Þ ¼
X

q

�qðu; !Þ ¼
�No

2�o�hm2!c

X
q

�ð!� !qÞAqðu; !Þ ð53Þ

D�ðu; !Þ ¼ dipD�ðu; !Þ þ inhD�ðu; !Þ ð54Þ

dipD�ðu; !Þ ¼ �No

�o�hm2!c

X
q

�ð!� !qÞdipBqðu; !Þ ð55Þ

inhD�ðu; !Þ ¼ �No

�o�hm2!c

X
q

�ð!� !qÞinhBqðu; !Þ ð56Þ

Inspection of Eqs. (37), (43), and (44) shows that the q dependence in the terms entering
Eqs. (53), (55), and (56) is contained entirely in the factor shown in Eq. (57).X

q

C�;qC��;q�ð!�!qÞ ¼ �ð!�!1Þ
X

q

C�;qC��;q� �0ð!�!1Þ
X

q

C�;qð!q�!1ÞC��;q

þð1=2Þ�00ð!�!1Þ
X

q

C�;qð!q�!1Þ2C��;q

¼ �ð!�!1Þ
�;�� �0ð!�!1ÞV�;1;�;1

þð1=2Þ�00ð!�!1Þ
X
�

V�;1;�;1V�;1;�;1 ð57Þ

Here the lineshape function �ð!� !qÞ is approximated by a Taylor expansion
with �0ð!� !1Þ ¼ @�ð!� !1Þ=@! and �00ð!� !1Þ ¼ @2�ð!� !1Þ=@!2, and
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Eqs. (28)–(30) are invoked to close the summations over the exciton indices. In the
application of Eq. (57) to Eqs. (37) and (53), (43) and (55), and (44) and (56) it is
found that all terms containing the phase factor exp½�ið!=cÞu ? ðR� � R�Þ� also
contain the coupling V�;s;�;t or the products V�;s;�;uV�;u;�;t. The coupling terms fall
off so rapidly with the interchromophoric separation that the truncated expansion
given by Eq. (58) can be applied with impunity [35, 68, 69].

exp½�ið!=cÞu ? ðR� � R�Þ� ¼ 1� ið!=cÞu ? ðR� � R�Þ ð58Þ
Combining Eqs. (37), (53), (57), and (58) the total directional absorption intensity
becomes Eq. (59).

�ðu; !Þ ¼ �No

2�o�hm2!c

�
�ð!� !1Þ

X
�

fu ?D�;1;�;1 ? ug � �0ð!� !1Þ

�
X
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X
�

V�;1;�;1fu ?D�;1;�;1 ? ug þ ð1=2Þ�00ð!� !1Þ

�
X
�

X
�

X
�

V�;1;�;1V�;1;�;1fu ?D�;1;�;1 ? ug
�

ð59Þ

The second term in Eq. (58) does not contribute to the Re part of the terms in Eq.
(37), since the coupling terms V�;1;�;1 and D�;1;�;1, Eqs. (32) and (39), are purely
real. In addition, the first term in Eq. (59) is non-vanishing and dominant since the
local electric dipole transition moments are non-vanishing by assumption, cf. Eq.
(25). Hence retaining only the two leading terms in Eq. (59), the application of an
‘‘inverted’’ Taylor expansion provides the contracted expression shown by Eq. (60)
utilizing Eq. (40) [69]. The lineshift parameter is defined by Eq. (61).

�ðu; !Þ ¼ �No!
2
1

2�o�h!c
�ð!� !1 � d�ðuÞÞ

X
�

fu ?D�;1 ? ug ð60Þ

d�ðuÞ ¼
P

�

P
�V�;1;�;1fu ?D�;1;�;1 ? ugP
�fu ?D�;1;�;1 ? ug ð61Þ

The absorption band shape for the exciton manifold therefore exhibits the same
line shape as the unperturbed chromophoric excitation, shifted by the parameter
defined in Eq. (61) and scaled by the directionally projected sum of the unper-
turbed dipole strength tensors for the individual chromophores. For a Gaussian line
shape �ð!� !1Þ of halfwidth 
, the step from Eq. (59) to Eq. (60) is valid for
jd�ðuÞj less than 
=2 [35]. Since the intensity coupling tensors in the numerator and
denominator in Eq. (61) are of the same magnitude, the lineshift parameter d�ðuÞ
will be of the order of the chromophoric interaction terms V�;1;�;1, making the
condition for the validity of the step from Eq. (59) to Eq. (60) coincide with the
condition for the validity of the Taylor expansion in Eq. (57). The band intensity in
Eq. (60) is sensitive to the choice of chromophoric reference points only through
the chromophoric interaction term, Eq. (32).

For the total directional electric dipole–electric dipole ACD intensity defined
in Eq. (55), Eqs. (43), (55), (57), and (58) combine to yield Eq. (62) where we have
introduced the electric dipole–electric dipole ACD coupling tensor (Eq. (63)) for
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which the diagonal blocks vanish identically (Eq. (64))

dipD�ðu;!Þ ¼ �No

�o�hm2c2

�
��0ð!�!1Þ

X
�

X
�

V�;1;�;1fu ? dipC�;1;�;1 ?ug
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ð62Þ

dipC�;1;�;1 ¼ m2!2
1fðR� � R�Þ : ½ð�; oj�	

e
j�; 1Þ3ð�; 1j�	

e
j�; oÞ�g ð63Þ

dipC�;1;�;1 ¼ 0 ð64Þ
The line shape contribution �ð!� !1Þ is absent in Eq. (62) as consequence of Eq.
(64), and the contracted form of Eq. (62) becomes Eq. (65) where the lineshift
parameter is defined by Eq. (66).

dipD�ðu; !Þ ¼ � �No

�o�hm2c2
�0ð!� !1 � dipgD�ðuÞÞ
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X
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X
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dipgD�ðuÞ ¼
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P
� V�;1;�;1V�;1;�;1fu ? dipC�;1;�;1 ? ug

2
P

�

P
� V�;1;�;1fu ? dipC�;1;�;1 ? ug ð66Þ

The electric dipole–electric dipole ACD exciton band shape hence becomes the neg-
ative of the derivative of the line shape function, shifted by the parameter in Eq. (66)
and scaled by the coupling term

P
�

P
� V�;1;�;1fu ? dipC�;1;�;1 ? ug [68, 69]. The inten-

sity tensors in Eq. (66) are governed by the chromophoric electric dipole transition
moments, and the condition for the validity of the contraction from Eq. (62) to Eq. (65)
again coincides with the condition for the validity of the expansion in Eq. (57).

For the total directional inherent ACD intensity defined in Eq. (56), Eqs. (44),
(57), and (58) combine to yield Eq. (67).
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ð67Þ

Utilizing Eq. (50), Eq. (67) can be contracted to Eq. (68) where the lineshift
parameter is given by Eq. (69).

inhD�ðu; !Þ ¼ �No

�o�hm2c2
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inhgD�ðuÞ ¼
P

�

P
�

P
� V�;1;�;1V�;1;�;1fu ? inhC�;1;�;1 ? ug

2
P

�

P
� V�;1;�;1fu ? inhC�;1;�;1 ? ug ð69Þ

The first term in Eq. (68), which vanishes identically for achiral optically inactive
chromophores, is manifestly independent of the choice of chromophoric reference
points if non-vanishing, i.e. for chiral and achiral optically active chromophores.
The second term in Eq. (68) and the expression in Eq. (65) for the electric dipole–
electric dipole band intensity both represent derivative band shapes scaled and
shifted by parameters determined by the intensity coupling terms inhC�;1;�;1 and
dipC�;1;�;1 and by the interaction term, Eq. (32). The relative signs and magnitudes
of these band intensity contributions hence depend on the chromophoric reference
points, as discussed in more detail in the subsection on the choice of chromophoric
reference points below and in Ref. [56].

Small Molecule Limits and Isotropic Intensities

Expressions for anisotropic and isotropic partial intensities applicable to molecular
exciton approaches for smaller coupled systems, such as the dimeric compounds
targeted by the exciton chirality method [26–31], are obtained by expansion of
Eqs. (37) and (41)–(44) to second order in the wave vector; cf. the subsection on
the small molecule limits in the preceeding section. For the partial absorption
intensity, Eq. (37), the small molecule limit follows by complete neglect of the
factor exp[�i(!=c)u ? ðR� � R�Þ�, cf. Eqs. (2), (3), and (6). Using Eq. (6) to express
the intensity in term of the dipole strength tensor, Eq. (37) then yields Eq. (70)
and the explicit expression for the isotropic counterpart becomes Eq. (71) utilizing
Eq. (19) to obtain the isotropic part of Eq. (39).

Dq ¼
3

2m2!1
2
Re

X
�

X
�

C�;qC��;qD�;1;�;1 ð70Þ

Dq ¼ Re
X
�

X
�

C�;qC��;q½ð�; oj�	
e
j�; 1Þ ? ð�; 1j�	

e
j�; oÞ� ð71Þ

For the small molecule limit of the CD intensities, we write the rotatory strength
tensor for the excitation in the form given in Eq. (72).

Rq ¼ dipRq þ inhRq ð72Þ
Application of Eqs. (58) and (63) in conjunction with Eqs. (10) and (43) then yields
Eq. (73) for the rotatory strength tensor representing the electric dipole–electric
dipole CD intensity, and Eqs. (19) and (63) provide the isotropic counterpart
(Eq. (74)).
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e
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e
j�; oÞ� ð74Þ
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In the inherent CD intensity in Eq. (44), the term fu ? inhC�;1;�;1 ? ug again repre-
sents the second order limit and Eqs. (10) and (44) then yield Eq. (75) for the
rotatory strength tensor representing the inherent CD intensity with the isotropic
counterpart (Eq. (76)) utilizing Eq. (19) to obtain the isotropic part of Eq. (46) and
recalling that the isotropic part of Eq. (47) vanishes identically.

inhRq ¼
3

4m2!1

Re
X
�

X
�

C�;qC��;qinhC�;1;�;1 ð75Þ

inhRq ¼ Re
X
�

X
�

C�;qC��;qIm½ð’�;oj�	e
j’�;1Þ ? ð’�;1j�	m

j’�;oÞ� ð76Þ

In the anisotropic band intensities, Eqs. (60), (65), and (68), the effective coher-
ence length of the exciton states is restricted by the short range nature of the inter-
chromophoric coupling V�;s;�;t [70], as used to justify the application of the truncated
expansion in Eq. (58). These expressions therefore represent the small molecule
limit as they stand. For the corresponding isotropic band intensities, Eqs. (19) and
(60) yield Eq. (77) for the absorption intensity. Here N is the number of chromo-
phores, cf. Eqs. (22)–(24), d� is the isotropic lineshift parameter, obtained as the
ratio of the isotropic parts of numerator and denominator in Eq. (61), and D1¼D�,1

is the dipole strength for the chromohoric excitation 1 o, which is independent of
chromophore index by the assumption of identical chromophores and sensitive to the
reference point only through the interchromophoric interaction in Eq. (32).

�ð!Þ ¼ ð1=3Þ
X

i

�ðui; !Þ ¼
�NoN

3�o�h!c
!2

1�ð!� !1 � d�ÞD1 ð77Þ

Similarly Eqs. (19), (63), and (65) yield Eq. (78) for the isotropic electric dipole–
electric dipole CD band intensity, where dipgD� is the isotropic part of the lineshift
parameter in Eq. (66). Finally, for the inherent isotropic CD band intensities,
Eqs. (19), (68), and (70) combine to yield Eq. (79) where inhgD� is the isotropic part
of the lineshift parameter in Eq. (68). R1 is the rotatory strength for the chromohoric
exucitation 1 o, cf. Eq. (21), which is independent of chromophore index by the
assumption of identical chromophores, if non-vanishing. We recall that electric
dipole–electric quadrupole contributions vanish for isotopic intensities, and we note
that the comments at the end of the preceeding subsection concerning the reference
point dependent interplay between Eq. (65) and the second term in Eq. (68) apply
equally well to the isotropic counterparts in Eqs. (78) and (79).
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Choice of Chromophoric Reference Points

The chromophoric reference points R� introduced in Eq. (25) were left unspecified,
except for the requirement of identical relative locations within the chromophores.
The partial absorption intensity in Eqs. (37)–(39) and the partial CD intensity in
Eqs. (41)–(47) are invariant to the choice of reference points, whereas the relative
magnitudes of the terms resulting from the separation into electric dipole–electric
dipole and inherent CD contributions in Eqs. (42)–(44), and from the separation of
the inherent CD contribution into multipolar terms in Eqs. (45)–(47), are sensitive
to first order in the choice of reference points, in line with the general discussion of
the translational properties in Ref. [56]. If all optical CD coupling tensor contribu-
tions are retained, the exciton absorption and CD spectra simulated from the partial
intensity expressions using different choices of reference points will hence differ
only as a consequence of the variation of the energy spectrum, Eq. (26), resulting
from the reference point sensitivity of the interaction term, Eq. (32).

The reference point sensitivity of the band intensities is discussed in connection
with Eqs. (60), (65), and (68), and in connection with Eqs. (77), (78), and (79). As
with the spectra simulated from the partial intensity expressions, the spectra simu-
lated from the expressions for the band intensities will differ only as a consequence
of the reference point variation of the interaction term, Eq. (32), if all the optical
CD tensor contributions are retained.

However, by the same token these remarks suggest that neglect of some of the
optical CD tensor contributions may introduce serious errors in the predicted CD
spectra, potentially compromising structure and chirality assignments. This aspect is
discussed in the accompanying communication [56], in the context of the application
of the concept of the partial optic axis for the choice of reference point and the
exploitation of chromophore symmetry for the selection of the optical contributions.

Discussion

The material presented in this section provides a theoretical framework for analysis
and computation of the anisotropic and isotropic molecular chiroptical properties
generated by exciton coupling between electric dipole allowed localized excita-
tions in a system of identical chromophoric units, and the formalism allows for the
inclusion of chromophoric chiroptical contributions through retaining the local
electric quadrupole and magnetic dipole chromophoric transition moments. Appli-
cation of the resulting expressions for the anisotropic and isotropic partial inten-
sities of the individual exciton transitions requires the evaluation of the interaction
term in Eq. (32) and the solution of Eq. (26) for the determination of the exciton
coefficients, in addition to the evaluation of the local multipolar transition moments
in Eqs. (25), (48), and (49). The evaluation of the interaction term and of the
multipolar transition moments in turn requires specification of the local chromo-
phoric reference points R�, as discussed in the last subsection of the preceeding
section; see also Ref. [56]. The need for the explicit solution of Eq. (26) is cir-
cumvented in the expressions for the anisotropic and isotropic band intensities.

The essence of the structural and chiral information provided by the spectral
simulations based on the partial intensity expressions and based on the band inten-
sity expressions is the same. However, when applicable, structural and chiral
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correlations are most directly extracted from the band intensities. For the ACD and
CD band intensities, the energetic and optical coupling between the chomophores
reflecting the chiral nature of the secondary structure of the exciton system, i.e. the
arrangement of the chromophores, are represented by the sign and magnitude of the
ACD derivative terms in Eqs. (65) and (68) and the CD derivative terms in Eqs. (78)
and (79), whereas the intensity of the unperturbed band shape term in Eqs. (68) and
(79) depends entirely on the nature of the individual chromophores. For the absorp-
tion band intensity Eqs. (60) and (77), the secondary structure enters only through
the line shift factors in Eq. (61), whereas the overall intensity is determined entirely
by the nature of the individual chromophores, and the band shape is identical to the
line shape of the individual chromophores except for the line shift.

Within the framework of an exciton approach, the essential limitations of the
present formalism lie in the neglect of the doubly excited states in Eq. (22), which
is counterbalanced by approximations in the energy terms, as discussed in the
subsection on the description of the exciton states above, and in the neglect of
higher singly excited chromophoric states (interband mixing), and of vibrational-
electronic (vibronic) coupling effects. Interband mixing can play an important role
in the description of the total intensities, since the intensities predicted within the
exciton formalism are conservative, i.e. the band shape contributions proportional
to the unperturbed chromophore line shape in Eqs. (60), (68), (77), and (79) inte-
grate to the corresponding unperturbed chromophoric intensities, whereas the deri-
vate band shape contributions in Eqs. (65), (68), (78), and (79) integrate to zero.
In this context, deviations from conservative intensity patterns must therefore be
ascribed to interband mixing [14, 15, 35, 69]. The neglect of vibronic effects is
coupled to the present use of the socalled strong coupling exciton approach, see
Refs. [6, 25, 70] for discussion and illustration of weak and strong coupling cases.
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Appendix: Mathematical Supplement

Notation for Complex Quantities

A complex quantity z can be written in the form of Eq. (A.1) where i is the imag-
inary unit, and the prefixes Re and Im denote the real and imaginary parts of z. By
definition Re {z} and Im {z} both represent purely real quantities. Using z� to
denote the complex conjugate of z, we have Eq. (A.2)

z ¼ Re fzg þ i Im fzg ðA:1Þ

Re fzg ¼ ð1=2Þfz� þ zg; Im fzg ¼ ði=2Þfz� � zg ðA:2Þ
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Vectors, Dyadics, and Tensors

Writing a Cartesian vector as a¼ {a1, a2, a3}, the dot and cross products of two
vectors (Eq. (A.3)) produce a scalar quantity and a vector quantity. The compo-
nents of the vector c are given by Eq. (A.4) where ���� is the Levi-Civita symbol
(¼1 for ���¼ 123 and cyclic permutations,¼�1 for ���¼ 132 and cyclic
permutations,¼ 0 otherwise). In addition, two vectors can be combined in a dyadic
product (Eq. (A.5)) producing a second rank Cartesian tensor represented by the
3�3 dimensional matrix constructed from the Cartesian components of the vectors
a and b. The dyadic product in Eq. (A.3) and the second rank unit tensor defined by
Eq. (A.6) are special cases of a Cartesian second rank tensor with the general form
of Eq. (A.7).

a � b ¼
X
�

a�b� ¼ c and a3b ¼ c ðA:3Þ

c� ¼
X
�

X
�

����a�b� ðA:4Þ

a : b ¼
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

8<
:

9=
; ðA:5Þ

I ¼
1 0 0

0 1 0

0 0 1

8<
:

9=
; ðA:6Þ

X ¼
�11 �12 �13

�21 �22 �23

�31 �32 �33

8<
:

9=
; ðA:7Þ

In terms of the Cartesian unit vectors e� and e� the tensor elements in Eq. (A.7) are
given by Eq. (A.8).

O�� ¼ e� ?X ? e� ðA:8Þ
The dyadic tensor allows two dot products (Eq. (A.9)) producing vector quantities,
and two cross products (Eq. (A.10)) producing dyadic tensor quantities. Scalar
quantities are obtained as shown by Eq. (A.11) and (A.12).

c ? ½a : b� ¼ ðc ? aÞb and ½a : b� ? c ¼ aðb ? cÞ ðA:9Þ

½a : b�3c ¼ a : ðb3cÞ and c3½a : b� ¼ ðc3aÞ : b ðA:10Þ

c ? ½a : b� ? d ¼ ðc ? aÞðb ? cÞ ðA:11Þ

c ?X ? d ¼
X
�

X
�

c�O��d� ðA:12Þ

We note further that the dyadic tensor a : b, Eq. (A.3), is not necessarily symmetric in
the Cartesian indices, i.e. a�b� 6¼ a�b� in general. However, from the decomposition
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in Eq. (A.13) we obtain a symmetric and an antisymmetric tensor with the Cartesian
components (Eqs. (A.14) and (A.15)), cf. Eq. (A.8), where the antisymmetric part
contains the cross product of the two vectors.

a : b ¼ ð1=2Þfa : bþ b : ag þ ð1=2Þfa : b� b : aÞ ðA:13Þ

e� ? fa : bþ b : ag ? e� ¼ e� ? fa : bþ b : ag ? e� ðA:14Þ

e� ? fa : b� b : ag ? e� ¼
X
�

����fe� ? ða3bÞg ¼ �e� ? fa : b� b : ag ? e� ðA:15Þ
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